It is well-established that genetic diversity has been declining in many dog breeds over the past two centuries, as a result of strong selection on a number of specific traits, combined in some cases with reductions in breed population sizes at certain points in history as well as popular sire effects. This is not only a concern for many dog breeds and landraces, but is a concern for many domesticated species around the world.
Such loss of genetic diversity has a major impact on animal welfare, as loss of genetic diversity can make it difficult or impossible to maintain closed breeding populations over the long term while also maintaining a peak level of health and wellness in individual animals. Despite such concern, limited research has been conducted to understand the impact of using genetic tools available to dog breeders today to guide breeding with an aim to preserve diversity in established dog breeds.
New research published in the scientific journal Evolutionary Applications, by a team of Embark scientists and engineers, led by Aaron Sams, Principal Scientist at Embark, uses population genetic simulations to understand the difference between using sparsely distributed data (e.g. sparse microsatellite/genetic marker panels) and densely distributed data (e.g. whole genome genotype panels) to inform individual breeding decisions.
This new work supports the conclusions that we described in an earlier post based on preliminary data from this study. In this blog post we underscored that if using genetic testing to guide breeding decisions, you cannot assess and preserve diversity in…